Биохимия формула холестерина

Формула и процесс биосинтеза холестерина

Биохимия формула холестерина

Холестерин – это жизненно необходимое соединение для организма. Он является субстратом для гормона прогестерона, эстрогена, тестостерона, гормонов надпочечников (альдостерона, кортизола), участвует в одном из направлений метаболизма витамина Д, а также используется для построения мембран и клеточных стенок.

Холестерол, с точки зрения биохимии, — это органический липофильный спирт, который не растворяется в воде. Рассмотрим, чем характерна химическая формула холестерина и какие особенности и стадии выделяют в процессе его биосинтеза.

Формула и строение холестерина

Холестерин относится к группе стероидов. Является одним из главных стероидов в макроорганизме человека, определяет активность обмена липидов. По своей структуре это твердое кристаллическое бесцветное вещество, не растворяющееся в воде. Лабораторной единицей измерения в периферической крови является ммоль/л.

Химическая формула (она же брутто-формула) холестерина — C27H46O.

Молекулярная масса — около 387 г/моль.

Структурная форма выглядит следующим образом:

Структурная формула холестерола с нумерацией атомов в молекуле

Одна из основных особенностей молекулы холестерола – способность связываться с другими соединениями, образовывая комплексы молекул.

Такими соединениями могут быть кислоты, амины, протеины, холекальциферол (предшественник витамина Д3), соли и прочие.

Данное свойство обусловлено характерным строением молекулы холестерола и его высокой активностью в процессах биохимии.

Биосинтез холестерина

Весь холестерин в человеческом макроорганизме подразделяется на экзогенный и эндогенный. Экзогенный составляет около 20% от общего показателя и поступает в организм с продуктами питания. Эндогенный холестерол синтезируется непосредственно в организме. Его производство синхронно происходит в двух локализациях.

В кишечнике специфическими клетками энтероцитами формируется около 15% вещества, а порядка 50% эндогенного холестерина вырабатывается в печени, где в дальнейшем связывается с белками, образует комплексы в виде липопротеидов и выходит в периферический кровоток.

Небольшая часть также отправляется на синтез триглицеридов – эфиров жирных кислот и глицерина, которые соединяются с холестеролом.

Синтез холестерола – сложный и энергозатратный процесс. Необходимо больше 30 последовательных реакций липидной трансформации, чтобы в результате образовалась холестериновая молекула. Схематически, все эти превращения можно сгруппировать в шесть стадий процесса синтеза холестерола.

  1. Биосинтез мевалоната. Состоит из трех реакций. Первые две из них являются реакциями кетогенеза, а третью реакцию катализирует фермент ГМГ-SКоА редуктаза, под действие которой образуется первый предшественник холестерина – мевалоновая кислота. Механизм действия большинства гиполипидемических препаратов, в особенности статинов, направлен именно на это звено биосинтеза. Путем воздействие на ферментативную активность редуктаз, можно частично управлять холестериновой трансформацией.
  2. Биосинтез изопентенилпирофосфата. Три фосфатных остатка присоединяются к полученной мевалоновой кислоте. После этого она проходит процессы декарбоксилирования и дегидрирования.
  3. На третьем этапе происходит слияние трех  изопентенилпирофосфатов, которые превращаются в фарнезилдифосфат.
  4. Из 2-х остатков фарнезилдифосфата образуется новая молекула – сквален.
  5. Линейный сквален проходит ряд реакций циклизации и трансформируется в ланостерол.
  6. От ланостерина отщепляются избыточные метильные группы, соединение проходит ступень изомеризации и восстановления, в результате которых образуется молекула холестерина.

Кроме активного фермента ГМГ-КоА редуктазы, в реакциях биосинтеза принимают участие инсулин, глюкагон, адреналин и специальный белок-переносчик, который связывает метаболиты на разных этапах.

Эфиры холестерола

Эстерификация холестерина – это процесс связывания с ним жирных кислот. Запускается он либо для переноса молекулы холестерола, либо для трансформации его в активную форму.

В данных превращениях важную роль играет лецитин – он присоединяется к молекуле холестерина и под действием фермента лецитин-холестерол-ацил-трансферазы образует эфиры лизолейцин и холестерид.

Таким образом, реакция эстерификации – это процесс, направленный на снижение количество свободного холестерола в кровотоке. Полученные эфиры тропны к «хорошим» липопротеидов высокой плотности и легко к ним присоединяются.

Образование эфиров холестерина – часть защитного антиатеросклеротического механизма.

Холестерин – очень важное для макроорганизма соединение, которое принимает не только участие в обмене липидов, но и в процессах транcформации биологически активных веществ и синтезе мембран клеток. Молекула данного вещества проходит сложный цикл превращений из более чем 30 реакций, которые регулируются и контролируются ферментативной и гуморальной системами.

Изменения в одном из звеньев биосинтеза может стать индикатором патологии со стороны внутренних органов и систем – печени, щитовидной и поджелудочной желез. Следует проводить профилактические обследования и скрининговые липидограммы, чтобы вовремя выявить патологический процесс.

Источник: https://holestein.ru/analizy/formula-i-sintez-holesterina

Общий холестерин и его фракции

Биохимия формула холестерина

Холестерин — одноатомный спирт, в молекуле которого имеется ядро циклопентанпергидрофенатрена.

Он является компонентом клеточных мембран, предшественником при синтезе желчных кислот, стероидных гормонов (глюкокортикоидов, альдостерона, половых гормонов), витамина D, обнаруживается во всех тканях и жидкостях организма как в свободном состоянии, так и в виде эфиров с жирными кислотами, преимущественно с линолевой (около 10% всего холестерина). Синтез холестерина происходит во всех клетках организма. Основными транспортными формами в крови являются α‑, β‑ и преβ‑липопротеины (или, соответственно, липопротеины высокой, низкой и очень низкой плотности). В плазме крови холестерин находится главным образом в форме сложных эфиров (60‑70%). Эфиры образуются либо в клетках в реакции катализируемой ацил-КоA-холестерин-ацилтрансферазой, использующей в качестве субстрата ацил‑КоA, либо в плазме в результате работы фермента лецитин-холестерин-ацилтрансферазы, осуществляющей перенос жирной кислоты со второго атома углерода фосфатидилхолина на гидроксильную группу холестерина. В плазме крови главными источниками холестерина и фосфатидилхолина для реакции служат липопротеины высокой и низкой плотности, этим путем образуется большая часть эфиров холестерина плазмы.

Для определения содержания холестерина в крови используют следующие методы:

  1. Титрометрические.
  2. Гравиметрические.
  3. Нефелометрические.
  4. Тонкослойная и газожидкостная хроматография.
  5. Полярографические методы, позволяют определять общий и свободный холестерин в присутствии ферментов холестеролоксидаз и холестеролэстераз.
  6. Флюориметрия по реакции с о‑фталевым альдегидом и другими реактивами.
  7. Ферментативные методы — определение протекает в одной пробирке, но в несколько этапов: ферментативный гидролиз эфиров холестерина, окисление холестерина кислородом воздуха с образованием холест‑4‑ен‑3‑ола и перекиси водорода. В качестве ферментов применяются холестеролоксидаза, холестеролэстераза, пероксидаза, каталаза. Ход реакции можно регистрировать:
  • спектрофотометрически по накоплению холестенола.
  • по убыли кислорода в среде.
  • по изменению окраски раствора, в качестве хромогенов — индикаторов протекания реакций — используются 4‑гидроксибензоат, 4‑аминофеназон, 4‑аминоантипирин.

Все эти методы весьма специфичны и хорошо воспроизводимы.

  1. Колориметрические методы, в основе которых лежат следующие цветные реакции:
  • реакция Биоля‑Крофта с использованием персульфата калия, уксусной и серной кислоты и с появлением красного окрашивания.
  • реакция Ригли, базирующаяся на взаимодействии холестерина с реактивом, в составе которого имеются метанол и серная кислота.
  • реакция Чугаева, в которой появляется красное окрашивание после реакции холестерина с ацетилхлоридом и хлористым цинком.
  • реакция Либермана‑Бурхарда, при которой холестерин окисляется в сильно кислой абсолютно безводной среде с образованием сопряженных двойных связей. В результате образуется соединение холестагексаена с концентрированной серной кислотой изумрудно‑зеленого цвета с максимумом абсорбции при 410 и 610 нм. Особенностью этой реакции является отсутствие стабильности окрашивания. В литературе можно встретить разное соотношение ингредиентов в реактиве Либерман-Бурхарда: чем выше содержание уксусного ангидрида, тем с большей скоростью протекает реакция. Протеканию реакции способствуют сульфосалициловая, паратолуенсульфоновая, диметилбензол‑сульфоновая кислоты. С эфирами холестерина реакция идет медленнее, чем со свободным холестерином, скорость возрастает при повышении температуры, свет оказывает разрушающее воздействие на продукты реакции. Все методы, основанные на реакции Либерман-Бурхарда, подразделяются на прямые и непрямые:
◊ к непрямым относятся методы Энгельгарда‑Смирновой, Раппопорта‑Энгельберга, Абеля и заключаются в предварительной экстракции холестерина из сыворотки с последующим определением его концентрации. Из этой группы методов наиболее известен метод Абеля с экстракцией свободного и этерифицированного холестерина изопропанолом или петролейным эфиром, гидролизом эфиров холестерина и последующей реакцией Либерман-Бурхарда. Методы этой группы более воспроизводимы и специфичны;
◊ в прямых методах (Илька, Мрскоса‑Товарека, Златкис‑Зака) холестерин предварительно не экстрагируется, а цветная реакция осуществляется непосредственно с сывороткой. Выявлено, что определение концентрации холестерина по Ильку при сравнении с методом Абеля дает более высокие (по разным авторам на 6%, на 10‑15%) значения, что необходимо учитывать при типировании гиперлипопротеинемий.
  • реакция Калиани‑Златкиса‑Зака, заключающаяся в появлении красно‑фиолетового окрашивания раствора при окислении холестерина хлорным железом в уксусной и концентрированной серной кислотах. Эта реакция в 4‑5 раз чувствительнее, чем реакция Либерман‑Бурхарда, но менее специфична.

Унифицированными методами являются колориметрические методы Илька и Калиани-Златкис-Зака.

Принцип

Основан на реакции Либерман‑Бурхарда: в сильно кислой среде в присутствии уксусного ангидрида происходит дегидратация холестерина с образованием окрашенного в зеленовато‑синий цвет бисхолестадиенилмоносульфоновой кислоты.

Нормальные величины

Сыворотка (указанный метод) 0 ‑ 1 год1.81‑4.53 ммоль/л
до 20 лет

Источник: https://biokhimija.ru/lipidny-obmen/cholesterin.html

Холестерин: биологическая роль, функции и особенности

Биохимия формула холестерина

Вот уже на протяжении долгого времени весь мир активно борется с холестерином, а точнее, с его повышенным содержанием в организме человека и последствиями этого.

Ученые из разных стран выдвигают свои мнения и доказательства на этот счет, спорят о своей правоте и приводят аргументы. Чтобы разобраться в пользе и вреде этого вещества для жизнедеятельности человека, необходимо выяснить биологическую роль холестерина.

Об особенностях, свойствах, причинах повышения холестерина, а также советах по контролю его содержания в крови вы узнаете из этой статьи.

Строение холестерина, его биологическая роль

В переводе с древнегреческого холестерин дословно означает “твердая желчь”. Представляет собой органическое соединение, которое участвует в формировании клеток всех живых организмов, кроме растений, грибов и прокариотов (клеток, которые не имеют ядра).

Биологическую роль холестерина сложно переоценить. В организме человека он выполняет ряд значимых функций, нарушение которых приводит к патологическим изменениям здоровья.

Функции холестерина:

  • Участвует в строении мембран клеток, придавая им упругость и эластичность.
  • Обеспечивает избирательную проницаемость тканей.
  • Принимает участие в синтезе гормонов, таких как эстрогены и кортикоиды.
  • Влияет на выработку витамина D и желчных кислот.

Особенность холестерина заключается в том, что он в чистом виде не растворим в воде. Поэтому для его транспортировки по кровеносной системе используются специальные «транспортные» соединения – липопротеиды.

Наряду с триглицеридами и фосфолипидами холестерин является одним из трех основных видов жира в организме. Он представляет собой природный липофильный спирт.

Около 50% холестерина ежедневно синтезируется в печени человека, 30% его образования приходится на кишечник и почки, оставшиеся 20% поступают извне – с продуктами питания.

Выработка этого вещества происходит в результате длительного сложного процесса, в котором можно выделить шесть этапов:

  • Выработка мевалоната. В основе этой реакции лежит расщепление глюкозы до двух молекул, после чего они вступают в реакцию с веществом ацетоацетилтрансфераза. Результатом первого этапа является образование меволаната.
  • Получение изопентенилдифосфата осуществляется путем присоединения трех остатков фосфата к результату предыдущей реакции. Затем происходит декарбоксилиризация и дегидрация.
  • При соединении трех молекул изопентенилдифосфата образуется фарнезилдифосфат.
  • После объединения двух остатков фарнезилдифосфата происходит синтез сквалена.
  • В результате сложного процесса с участием линейного сквалена образуется ланостерол.
  • На завершающем этапе происходит синтез холестерина.

Подтверждает важную биологическую роль холестерина биохимия. Этот процесс четко регулируется человеческим организмом, чтобы не допустить переизбыток или недостаток этого важного вещества.

Ферментная система печени способна ускорять или замедлять реакции метаболизма липидов, которые лежат в основе синтеза жирных кислот, фосфолипидов, холестерина и др.

Говоря о биологической роли, фунции и обмене холестерина стоит отметить, что около двадцати процентов его общего количества поступают в организм с пищей. В большом количестве он содержится в продуктах животного происхождения.

Лидерами являются яичный желток, копченые колбасы, сливочное и топленое масло, гусиная печень, печеночный паштет, почки. Ограничив потребление этих продуктов, можно снизить количество холестерина, получаемого извне.

Химическая структура этого органического соединения в результате метаболизма не может быть расщеплена на СО2 и воду. В связи с этим большая часть холестерина выводится из организма в виде желчных кислот, остальная – с фекалиями и в неизменном виде.

«Хороший» и «плохой» холестерин

Это вещество имеется в большинстве тканей и клеток человеческого организма, что обусловлено биологической ролью холестерина.

Он выступает модификатором бислоя клеток, придавая ему жесткость, чем стабилизирует текучесть плазматической мембраны. После синтеза в печени холестерин необходимо доставить в клетки всего организма.

Его транспортировка происходит в составе хорошо растворимых комплексных соединений, называемых липопротеидами.

Они бывают трех типов:

  • Липопротеиды высокой плотности (высокомолекулярные).
  • Липопротеиды низкой плотности (низкомолекулярные).
  • Липопротеиды очень низкой плотности (очень низкомолекулярные).
  • Хиломикроны.

Эти соединения отличатся склонностью выпадения холестерина в осадок. Была установлена зависимость между содержанием в крови липопротеидов и здоровьем человека. Люди, у которых имелось повышенное содержание ЛПНП, имели атеросклеротические изменения в сосудах.

И наоборот, для тех, у кого в крови преобладали ЛПВП, был характерен здоровый организм. Все дело в том, что низкомолекулярные транспортеры склонны к выпадению осадка холестерина, который оседает на стенках сосудов. Поэтому его называют «плохим».

С другой стороны, высокомолекулярные соединения, имея большую растворимость, не являются атерогенными, поэтому их называют «хорошими».

в крови. Показатели уровня нормы

Учитывая важную биологическую роль холестерина, его уровень в крови должен быть в пределах допустимых значений:

  • у женщин эта норма варьируется от 1,92 до 4,51 ммоль/л.
  • у мужчин – от 2,25 до 4,82 ммоль/л.

При этом уровень холестерина ЛПНП должен быть меньше 3-3,35 ммоль/л, ЛПВП – больше 1 ммоль/л, триглицеридов – 1 ммоль/л. Считается хорошим показателем, если количество липопротеидов высокой плотности составляет 20% от общего числа холестерина. Отклонения как в большую, так и в меньшую сторону говорят о нарушениях здоровья и требуют дополнительного обследования.

Причины увеличения уровня холестерина в крови

Повышение содержания «плохого» холестерина в крови называется гиперхолестеринемия. Она увеличивает риск сердечно-сосудистых заболеваний. Говоря о причинах увеличения количества холестерина в крови, можно выделить несколько:

  • генетические изменения наследственного характера;
  • нарушение функций и активности печени – главного производителя липофильного спирта;
  • гормональные изменения;
  • частые стрессы;
  • неправильное питание (употребление жирной пищи животного происхождения);
  • нарушение метаболизма (патология органов пищеварения);
  • курение;
  • малоподвижный образ жизни.

Опасность избытка холестерина в организме

Гиперхолестеринемия способствует развитию атеросклероза (образование на стенках сосудов склеротических бляшек), ишемической болезни сердца, диабета, образованию камней в желчном пузыре. Таким образом, важная биологическая роль и опасность изменения уровня холестерина в крови отражаются в патологических изменениях здоровья человека.

Контроль

Чтобы избежать неприятных последствий повышения уровня «плохого» холестерина, необходимо предотвратить рост ЛПНП и ЛПОНП.

Сделать это может каждый, необходимо:

  • снизить потребление транс-жиров;
  • увеличить в рационе количество фруктов и овощей;
  • повысить физическую активность;
  • исключить курение;

При соблюдении этих правил риск повышения холестерина в крови снижается в несколько раз.

Пути снижения

Выводы об уровне холестерина в крови и необходимости его снижения делаются медицинскими специалистами на основании результатов анализов. Заниматься самолечением в этом случае может быть опасно.

При стабильно повышенном холестерине для его снижения применяются преимущественно консервативные методы:

  • Применение медицинских препаратов (статинов).
  • Соблюдение здорового образа жизни (правильное питание, диета, физическая активность, отказ от курения, качественный и регулярный отдых).

Стоит отметить в заключении: строение и биологическая роль холестерина, гиперхолестеринемия и ее последствия подтверждают важность для человека этого вещества и всех процессов, связанных с ним. Поэтому необходимо ответственно относиться к факторам, способным повлиять на качество и количества холестерина в организме.

Источник: https://FB.ru/article/384630/holesterin-biologicheskaya-rol-funktsii-i-osobennosti

Биосинтез холестерина

Биохимия формула холестерина

В 40-60-х годах нашего столетия К. Блох и сотр. в опытах с использованием ацетата, меченного 14С по метильной и карбоксильной группам, показали, что оба атома углерода уксусной кислоты включаются в холестерин печени приблизительно в одинаковых количествах. Кроме того, было доказано, что все атомы углерода холестерина происходят из ацетата.

В дальнейшем благодаря работам Ф. Линена, Г. Попьяка, Дж. Корн-форта, А.Н.

Климова и других исследователей были выяснены основные детали ферментативного синтеза холестерина, насчитывающего более 35 энзиматических реакций.

В синтезе холестерина можно выделить три основные стадии: I – превращение активного ацетата в мевалоновую кислоту, II – образование сквалена из мевалоновой кислоты, III – циклизация сквалена в холестерин.

Рассмотрим стадию превращения активного ацетата в мевалоновую кислоту. Начальным этапом синтеза мевалоновой кислоты из ацетил-КоА является образование ацетоацетил-КоА посредством обратимой тиолазной реакции:

Затем при последующей конденсации ацетоацетил-КоА с 3-й молекулой ацетил-КоА при участии гидроксиметилглутарил-КоА-синтазы (ГМГ-КоА-синтаза) образуется β-гидрокси-β-метилглутарил-КоА:

Далее β-гидрокси-β-метилглутарил-КоА под действием регуляторного фермента НАДФ-зависимой гидроксиметилглутарил-КоА-редуктазы (ГМГ-КоА-редуктаза) в результате восстановления одной из карбоксильных групп и отщепления HS-KoA превращается в мевалоновую кислоту:

ГМГ-КоА-редуктазная реакция – первая практически необратимая реакция в цепи биосинтеза холестерина. Она протекает со значительной потерей свободной энергии (около 33,6 кДж). Установлено, что данная реакция лимитирует скорость биосинтеза холестерина.

Наряду с классическим путем биосинтеза мевалоновой кислоты имеется второй путь, в котором в качестве промежуточного субстрата, по-видимому, образуется не β-гидрокси-β-метилглутарил-КоА, а β-гидрокси-β-метилглутарил-S-АПБ.

Реакции этого пути идентичны начальным стадиям биосинтеза жирных кислот вплоть до образования ацетоацетил-S-АПБ. В образовании мевалоновой кислоты по этому пути принимает участие ацетил-КоА-карбоксилаза – фермент, осуществляющий превращение ацетил-КоА в малонил-КоА.

Оптимальное соотношение малонил-КоА и ацетил-КоА для синтеза мевалоновой кислоты – 2 молекулы ацетил-КоА на 1 молекулу малонил-КоА.

Участие малонил-КоА – основного субстрата биосинтеза жирных кислот в образовании мевалоновой кислоты и различных полиизопреноидов показано для ряда биологических объектов: печени голубя и крысы, молочной железы кролика, бесклеточных дрожжевых экстрактов.

Этот путь биосинтеза мевалоновой кислоты отмечен преимущественно в цитозоле клеток печени. Существенную роль в образовании мевалоната в данном случае играет ГМГ-КоА-редуктаза, обнаруженная в растворимой фракции печени крысы и неидентичная микросомному ферменту по ряду кинетических и регуляторных свойств.

Регуляция второго пути биосинтеза мевалоновой кислоты при ряде воздействий (голодание, кормление холестерином, введение поверхностно-активного вещества тритона WR-1339) отличается от регуляции первого пути, в котором принимает участие микросомная редуктаза.

Эти данные свидетельствуют о существовании двух автономных систем биосинтеза мевалоновой кислоты. Физиологическая роль второго пути окончательно не изучена.

Полагают, что он имеет определенное значение не только для синтеза веществ нестероидной природы, таких, как боковая цепь убихинона и уникального основания N6-(Δ2-изопентил)-аденозина некоторых тРНК, но и для биосинтеза стероидов (А.Н. Климов, Э.Д. Полякова).

На II стадии синтеза холестерина мевалоновая кислота превращается в сквален. Реакции II стадии начинаются с фосфорилирования мевалоновой кислоты с помощью АТФ. В результате образуется 5-фосфорный эфир, а затем 5-пирофосфорный эфир мевалоновой кислоты:

5-пирофосфомевалоновая кислота в результате последующего фосфорилирования третичной гидроксильной группы образует нестабильный промежуточный продукт – 3-фосфо-5-пирофосфомевалоновую кислоту, которая, декарбоксилируясь и теряя остаток фосфорной кислоты, превращается в изопентенилпирофосфат. Последний изомеризуется в диметилаллилпирофосфат:

Затем оба изомерных изопентенилпирофосфата (диметилаллилпирофос-фат и изопентенилпирофосфат) конденсируются с высвобождением пи-рофосфата и образованием геранилпирофосфата:

К геранилпирофосфату вновь присоединяется изопентенилпирофосфат. В результате этой реакции образуется фарнезилпирофосфат:

В заключительной реакции данной стадии в результате НАДФН-за-висимой восстановительной конденсации 2 молекул фарнезилпирофосфата образуется сквален:

На III стадии биосинтеза холестерина сквален под влиянием сквален-оксидоциклазы циклизируется с образованием ланостерина.

Дальнейший процесс превращения ланостерина в холестерин включает ряд реакций, сопровождающихся удалением трех метильных групп, насыщением двойной связи в боковой цепи и перемещением двойной связи в кольце В из положения 8, 9 в положение 5, 6 (детально эти последние реакции еще не изучены):

Приводим общую схему синтеза холестерина:

Начиная со сквалена, все промежуточные продукты биосинтеза холестерина (включая и холестерин) нерастворимы в водной среде. Поэтому они участвуют в конечных реакциях биосинтеза холестерина, будучи связанными со стеринпереносящими белками (СПБ). Это обеспечивает их растворимость в цитозоле клетки и протекание соответствующих реакций.

Данный факт имеет важное значение и для вхождения холестерина в клеточные мембраны, окисления в желчные кислоты, превращения в стероидные гормоны. Как отмечалось, реакцией, регулирующей скорость биосинтеза холестерина в целом, является восстановление β-гидрокси-β-метилглутарил-КоА в мевалоновую кислоту, катализируемое ГМГ-КоА-редуктазой.

Данный фермент испытывает регуляторное воздействие ряда

факторов. В частности, скорость синтеза редуктазы в печени подвержена четким суточным колебаниям: максимум ее приходится на полночь, а минимум – на утренние часы.

Активность ГМГ-редуктазы возрастает при введении инсулина и тире-оидных гормонов. Это приводит к усилению синтеза холестерина и повышению его уровня в крови.

При голодании, тиреоидэктомии, введение глюкагона и глюкокорти-коидов, напротив, отмечается угнетение синтеза холестерина, что прежде всего связано со снижением активности ГМГ-КоА-редуктазы.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

Еще по теме:

  • Биосинтез холестерина – Наглядная биохимия

Источник: http://www.xumuk.ru/biologhim/169.html

Биологическая роль холестерина

Биохимия формула холестерина

Кафедра медицинской химии

Реферат

Строение и биологическая роль холестерина.
Гиперхолестеринемия и атеросклероз.

(обзор литературы)

Выполнила:

студентка 2 курса

медико-профилактического факультета

специальности «Медицинская биохимия», 1 группы

Бабаха Вероника Александровна

Научный руководитель:

канд. хим. наук, доцент, Терах Е.И.

Новосибирск – 2015

Введение………………………………………………………………………………………………….3

Строение холестерина…………………………………………………………4

Биологическая роль……………………………………………………………5

Гиперхолестеринемия…………………………………………………………6

Лечение гиперхолестеринемии……………………………………………….7

Профилактикагиперхолестеринемии……………………………………….8

Атеросклероз……………………………………………………………………8

Клиническая картина………………………………………………………….9

Последствия атеросклероза…………………………………………………..10

Основные принципы лечения…………………………………………………12

Заключение…………………………………………………………………….13

Список литературы……………………………………………………………14

Введение

Холестерин – загадка современной науки. О нем написаны тонны научной литературы. Загадочности поубавилось, но проблемы, связанные с холестерином, остались.

В 1769 г. Пулетье де ла Саль получил из желчных камней плотное белое вещество, обладавшее свойствами жиров. В чистом виде холестерин был выделен химиком, членом национального Конвента и министром просвещения Антуаном Фуркруа в 1789 г. В 1815 г.

Мишель Шеврёль, так же выделивший это соединение, назвал его холестерином. В 1859 г. Марселен Бертло доказал, что холестерин принадлежит к классу спиртов, после чего французы переименовали его в «холестерол».

В ряде языков сохранилось старое название – холестерин[1].

Особое же внимание к холестерину было привлечено, когда обнаружилось, что большая часть населения в той или иной степени больна атеросклерозом (поражением сосудов в результате отложения в них холестерина).

Так для чего и зачем нужен холестерин и какова его биологическая роль? Этот вопрос интересует не только научных работников, но и тех, кому врачи посоветовали следить за его уровнем и беречь здоровье.

Строение холестерина

Холестерин (холестерол)– органическое соединение, жирорастворимый спирт, относящийся к классу стероидов. Молекулярная формула С27Н46О.

Углеродный скелет холестерина состоит их четырех колец: три кольца содержат по 6 атомов углерода и одно пять. От него отходит длинная боковая цепь. Нерастворим в воде, но может образовывать с ней коллоидные растворы, растворим в жирах и органических растворителях.

В чистом виде представляет собой мягкое белое вещество (жирные на ощупь жемчужные кристаллы в виде игл) без запаха и вкуса[2].

Это соединение обнаруживается в организме, как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот.

Свободный холестерин – компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей.

Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина – холестериды.

Свободный холестерин – компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина.

Холестерин не растворим в воде, поэтому в организме его нельзя встретить в одиночестве, он передвигается с помощью различных белков. Комплексы, получающиеся в результате такого соединения, называются липопротеинами. Они имеют сферическую форму – внутри находится холестериновый эфир и триглицериды, а оболочка состоит из белка[3].

Биологическая роль холестерина

Около 80% холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), 20% поступает с пищей. В организме человека холестерин бывает в свободной форме- 80%, в связанной форме- 20%.

Холестерин необходим для выработки витамина D, который участвует в регуляции обмена кальция и фосфора в организме.

Используется надпочечниками для синтеза адренокортикотропных гормонов, яичниками для образования эстрогенов и прогестерона (женские половые гормоны), семенниками для синтеза тестостерона (мужские половые гормоны).

Играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от раковых заболеваний.

Холестерин используется для синтеза холевой кислоты в печени даже в большем количестве, чем для образования клеточных мембран. Более 80% холестерина превращается в холевую кислоту. Ее синтез наряду с использованием некоторых других веществ, приводит к образованию солей желчных кислот, которые обеспечивают переваривание и всасывание жиров.

Так же холестерин служит строительным материалом для клеточных оболочек, делая их прочными и эластичными[4].

Гиперхолестеринемия

Гиперхолестеринемия– повышение уровня холестерина в крови. Является основным фактором риска развития атеросклероза. Так же может стать причиной таких заболеваний как ишемическая болезнь сердца, диабет, желчнокаменная болезнь, ожирение.

Распространенность в различных странах: Япония – 7%, Италия – 13%, Греция – 14%, США – 39%, Украина – 25%.

Выделяют первичную и вторичную формы гиперхолестеринемии.

Причиной возникновения первичной гиперхолестеринемии(не является следствием каких-либо заболеваний) получение по наследству от одного или обоих родителей аномального гена, который отвечает за синтез холестерина.

Вторичные(развивается вследствие некоторых заболеваний) гиперхолестеринемии вызывают такие состояния как гипотиреоз (снижение функции щитовидной железы), сахарный диабет, обструктивные заболевания печени (заболевания, при которых нарушается отток из печени желчи), например, желчнокаменная болезнь (образование камней в желчном пузыре).

В развитии и прогрессировании гиперхолестеринемии являются те же факторы, что и при атеросклерозе, такие как малоподвижный образ жизни( гиподинамия), злоупотребление жирной, богатой холестерином пищей, злоупотребление алкоголем, курение.

В группу риска по гиперхолестеринемии входят лица мужского пола, мужчины старше 45 лет; люди, страдающие ожирением[5].

Гиперхолестеринемия чаще выявляется случайно, при лабораторных методах обследования, таких как биохимический анализ крови. В норме показатель холестерина в крови у женщин 1,92-4,51 ммоль/л; у мужчин 2,25-4,82 ммоль/л. Согласно официальным рекомендация Всемирной Организации Здравоохранения «нормальные» значения жировых фракций в крови должный быть таковы:

1. Общий холестерин- меньше 5,2 ммоль/л

2. Холестерин липопротеинов низкой плотности- меньше 3-3,5 ммоль/л

3. Холестерин липопротеинов высокой плотности- больше 1,0 ммоль/л

4. Триглицериды – 2,0 ммоль/л [6].

Внешние проявления гиперхолестеринемии являются ксантомы- плотные узелки, содержащие холестерин , над сухожилиями пациента, например, на кисти; ксантелазмы – отложение холестерина под кожей век в виде плоских узелков желтого цвета или не отличающихся по цвету от других участков кожи;липоидная дуга роговицы – белый либо серовато-белый ободок отложившегося холестерина по краям роговицы глаза. Появление липоидной дуги роговицы в возрасте до 50 лет свидетельствует о наличии наследственной гиперхолестеринемии[5].

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/19_278858_biologicheskaya-rol-holesterina.html

Формула холестерина

Биохимия формула холестерина

Для уточнения диагноза иногда проводится анализ липидограмма, с помощью которого определяется формула холестерина в крови.

Исследование капиллярной крови осуществляется в лабораторных условиях, направление дает семейный врач. Нормы имеют различные значения для разных возрастных и половых категорий.

Отклонения указывают на возможные заболевания, вследствие чего следует провести дополнительные обследования.

Что такое холестерин?

Органическое соединение, внешне похожее на жир беловатого цвета, было обнаружено в 1769 году. Его назвали холестерином. Второе название — холестерол употребляется во Франции. Химическое соединение присутствует во всех живых структурах на Земле, является жизненно важным. 20% вещества человеческий организм вынужден потреблять извне, остальные 80% вырабатываются различными органами:

  • печень;
  • надпочечники;
  • кишечник;
  • почки;
  • половые железы.

Виды вещества

Холестерол в обыденном сознании — вредное соединение (липопротеин низкой плотности, ЛПНП), которое нужно как можно меньше употреблять. Отчасти это правильно, но существует и полезный холестерин. Это жизненно важное вещество (липопротеин высокой плотности, ЛПВП), без него невозможна нормальная жизнедеятельность.

Триглицериды — нейтральный вид, это просто жир в плазме крови, он необходим для поддержания энергетического баланса. Однако, превышение нормы чревато сердечно-сосудистыми заболеваниями. Химическая структурная формула сложная, в ее составе углерод, кислород и водород.

Положительное воздействие холестерина проявляется в следующих процессах:

Холестерин участвует во многих важных процессах организма, в частности способствует укреплению иммунной системы.

  • Укрепляет клеточные мембраны и обеспечивает их проницаемость.
  • Служит материалом для образования гормонов тестостерона, эстрогена, кортизола, желчных кислот, витамина D3.
  • Нормализует работу нервной системы.
  • Повышает иммунитет.
  • Предотвращает онкологию, защищая красные кровяные тельца.

Молекулярная структура холестерина низкой плотности такова, что он может принести значительный вред организму. Прежде всего, это возникновение атеросклероза.

Холестериновая бляшка способна закупорить кровеносный сосуд более чем на 50%, что часто приводит к инфаркту, инсульту. Излишек вещества в крови провоцирует образование камней в желчном пузыре.

Помимо этого, возможно возникновение таких заболеваний:

  • почечная недостаточность;
  • диабеты I и II типов;
  • подагра;
  • онкология поджелудочной железы и простаты;
  • болезни сердца.

Оксистеролы или производные холестерина содержатся в жирах животного происхождения, поэтому необходимо строго следить за нормой их потребления.

Лабораторный анализ и формула

Определить уровень холестерина в крови можно с помощью лабораторных исследований плазмы.

Определение холестерина производится в условиях поликлиники. Из капилляров (пальца) берут кровь, по которой и определяют норму или патологию содержания вещества.

Если норма общего холестерина превышена, назначают более детальное исследование венозной крови, которое называется липидограмма. Готовятся к нему за 12 часов, исключая кофе, чай, алкоголь, жирную пищу и прием лекарств.

Поскольку сердечно-сосудистые заболевания, в частности, атеросклероз, является причиной высокой смертности, ВОЗ разработала нормы для всех видов.

Показания уровня
Вид холестеринаОптимальное значение, (ммоль/л)ПограничноеВысокое
Общий5,15до 6,18свыше 6,2
Триглицериды1,72,25,6
ЛПНП («плохой»)2,64,124,9
ЛПВП («хороший»)1,6до 1,5менее 1—1,3

Коэффициент холестеринового отношения определяется по формуле: общий холестерин делят на показатель ЛПВП. Показатель не должен превышать 3,5.

Для диагностики атеросклероза используют формулу Фридвальда: ЛПНП-ХС = Общий ХС — ЛПВП-ХС — ТГ/2,2 (ммоль/л).

Коэффициент атерогенности, который показывает соотношение вредного и полезно холестерола вычисляется так: КА = (ОХ — ХС-ЛПВП): ХС-ЛПВП. Норма такого анализа колеблется в пределах 2—3.

Гиперхолестеринемия — повод провести обследование, о чем сообщит лечащий врач. Превышение нормы в крови не всегда указывает на заболевание. Это может быть следствием беременности, алкогольной интоксикации, неправильного рациона и малоподвижного образа жизни. Необходимо также обращать внимание на количество триглицеридов в крови, от которых напрямую зависит масса тела.

Источник: https://EtoHolesterin.ru/hol/drugoe/formula-holesterina.html

Гиппократ
Добавить комментарий